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Nerve conduits are becoming increasingly popular for the repair of peripheral nerve 
injuries. Their ease of application and lack of donor site morbidity make them an 
attractive option for nerve repair in many situations. Today, there are many differ-
ent conduits to choose in different sizes and materials, giving the reconstructive sur-
geon many options for any given clinical problem. However, to properly utilize these 
unique reconstructive tools, the peripheral nerve surgeon must be familiar not only 
with their standard indications but also with their functional limitations. In this review, 
the authors identify the common applications of nerve conduits, expected results, and 
shortcomings of current techniques. Furthermore, future directions for nerve conduit 
use are identified.

Abstract

Keywords
►► nerve injury
►► nerve conduit
►► nerve palsy
►► nerve gap

DOI https://doi.org/ 
10.1055/s-0038-1626687.
ISSN 0974-3227.

Copyright ©2018 Society of Indian 
Hand & Microsurgeons 

Introduction
Peripheral nerve injury (PNI) incurs a significant medi-
cal burden. More than 1 million people worldwide present 
with PNI every year.1 After 1 year, 24 to 41% of patients with 
a major upper extremity PNI will remain out of work if the 
nerves are not repaired to adequate functional recovery.2,3 
The current gold standard treatment for PNI is nerve auto-
grafting if tensionless primary nerve repair is not possible.4–7 
However, the use nerve autograft has been hampered by lim-
ited donor nerve sources, increased operating time, donor 
site morbidity, and functional loss.8,9 Furthermore, autografts 
are currently limited to gaps of 5 cm or less.4 Because of these 
limitations, new efforts toward peripheral nerve repairs have 
focused on development of nerve grafting alternatives.

Nerve Conduit Materials
Nerve conduits function to enclose, or entubulate, the distal 
and proximal ends of the severed nerve. In doing so, these 
conduits provide a guide for budding axons, a barrier be-
tween the healing nerve and surrounding inflammation and 
fibrosis, and a space for interaction of the exudates from the 
severed nerve ends. This axoplasmic exudative fluid contains 

neurotrophic and other growth factors that will give rise to 
a formed fibrin matrix and basal lamina, which will in turn 
promote the ingrowth of axons and Schwann cells. When 
established in a timely fashion, these elements function to 
limit wallerian degeneration and reestablish the function of 
the severed nerves.8,10–12

Nerve conduits continue to evolve as novel materials and 
modifications set out to address observed shortcomings of 
available options. One such example is silicone, which is 
ubiquitous in the medical field, it but presents limitations 
when utilized as a conduit material; specifically, silicone 
is nonresorbable, which translates to an increased risk of 
compression and decrease in axonal conduction, possibly 
necessitating a secondary procedure for removal.13 Similar 
observations over the course of nerve conduit use suggest 
ideal synthetic conduit characteristics include the following: 
biocompatibility and nonimmunogenicity not to induce an 
inflammatory response; semipermeability and appropriate 
porosity to allow oxygen and nutrient exchange; biodegrad-
ability to prevent a second operation for removal, while also 
exhibiting mechanical stability during the healing process; 
flexibility to prevent compression of the regenerating axons 
and tissue ischemia; and ease of fabrication, sterilization, 
and implantation.14–23
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The currently available Food and Drug Administration 
(FDA)–approved conduits are manufactured from type I col-
lagen, polyglycolic acid (PGA), polycaprolactone (PCL), poly-
vinyl alcohol (PVA), and porcine small intestine submucosa 
(SIS).8 All these materials exhibit some of the aforementioned 
properties, but none of them have proved to exhibit perfect 
qualities as a nerve conduit.

Nerve Conduits in Hand Reconstruction
Though an exhaustive study of the use of nerve conduits in 
upper extremity peripheral nerve repair is outside the scope 
of this article, many authors have shown promising results 
for nerve conduits in small sensory nerves with small gap, 
especially in digital nerve repair. Furthermore, the use of 
conduits prevents axons from traversing two suture lines, re-
duces operating time, and avoids potential donor site compli-
cations (►Fig. 1). Mackinnon and Dellon studied 15 patients 
with digital nerve injuries averaging 17-mm gaps (range: 
5–30 mm) repaired with PGA conduits. After a mean fol-
low-up of 22 months, 86% of patients reported an exceptional 
or good outcome, judged by moving two-point discrimina-
tion (2PD) of 4 to 7 mm or static two-point discrimination 
7 to 15 mm.24 Rinker and Liau studied 36 digital nerve inju-
ries with mean gap size of 10 mm (range: 4–25 mm) repaired 
with PGA conduits. Sensory testing, consisting of static and 
moving 2PD at 6 and 12 months, demonstrated equivalent 
recovery to repairs made with autologous vein grafts.25

Similarly, Weber et al compared the use of PGA nerve con-
duits with primary nerve repair for deficits 4 mm or less. 
PGA conduits produced superior results with 91% of patients 
achieving excellent results with 2PD versus 49% of those re-
paired using an end-to-end method. For gap lengths of 5 to 
7 mm, 61% of PGA conduits demonstrated excellent or good 
results versus 86% in the standard repair method. However, 
for repair of gap lengths 8 mm or greater, PGA conduits again 
outperformed standard repair with 42% of patients showing 
excellent results versus none with excellent results in the 
standard repair cohort.26 Using collagen conduits, Bushnell 
et al followed nine patients with digital nerve injury repair 
for an average of 15 months. The authors reported excellent 
or good results with 2PD in 89% (8/9) of patients.27 Taras 

et al followed 22 digital nerve injuries repaired with colla-
gen conduits for a mean of 20 months. Seventy-three percent 
(16/22) of patients reported excellent or good results in tests 
of static and moving 2PD.28 Lohmeyer et al studied 40 digital 
nerve injuries repaired with collagen conduits to 12-month 
follow-up. Twenty (50%) of these patients reported excellent 
or good 2PD and monofilament testing.29 Haug et al followed 
35 patients with 45 digital nerve repairs (mean defect length 
of 12 mm) to 12 months. Patients reported quality of recov-
ery after 12 months, using a scale ranging from a score of 
1 (good) to 4 (bad). Though nearly 60% reported a score of one 
or two for monofilament testing, around 20% reported a one 
or two for 2PD.30

Problems and Limitations
Though the use of nerve conduits for peripheral nerve re-
pairs shows promising results for small diameter nerves with 
small gaps, further study is needed to elucidate the efficacy of 
nerve conduits in cases of larger peripheral nerves with more 
significant gaps. Moore et al reported on two brachial plexus, 
one median nerve, and one ulnar nerve injury repaired with 
collagen and PGA nerve conduits. No patient regained either 
motor or sensory function. In two reexplorations of the repair 
site, significant neuroma formation occurred even outside of 
the initial repair site, necessitating neuroma resection and 
repair with autograft.31 The authors hypothesized that larger 
diameter and length produce larger volume, thus diluting the 
neurotropic factors responsible for axonal budding and nerve 
reconstitution. Indeed, many successful reports regarding 
larger nerve repair with conduits use different tactics to min-
imize volume mismatch by using smaller diameter conduits 
to bridge one defect and combining a nerve conduit with a 
small autograft.32–35 Alternatively, a group of authors have 
reported success without using these additional methods 
in cases of median, ulnar, and radial nerve repair using con-
duits. Dienstknecht et al used type 1 collagen nerve conduits 
to treat nine patients with acute median nerve injuries, locat-
ed distal to the anterior interosseous nerve and proximal to 
the recurrent branch, with gaps ranging between 1 and 2 cm 
with the patient in wrist flexion. Their results demonstrat-
ed favorable clinical outcomes and patient satisfaction.36 

A B

Fig. 1  Repair of digital nerve injury with nerve conduit. (A) Evidence of injury to digital nerves with small gaps spanning the nerves.  
(B) Reconstruction with nerve conduits.
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Recently, many of the same authors collaborated for a study 
published under Klein et al examining the treatment of 
10 patients with ulnar and radial nerve defects of up to 1.2 cm 
in size with type 1 collagen conduits. They found the results 
most favorable in young patients with nondelayed nerve re-
pair, while also recognizing that limitations remain regarding 
both defect size and the possibility of misdirected regrowing 
axons under these circumstances.37 Modifications of exist-
ing nerve conduits to address these and other disadvantages 
are needed, preferably to complement future studies offer-
ing high-quality evidence. Improvements in both design and 
the body of literature may provide better clarification of the 
range of application of nerve conduits in cases of large diam-
eter nerve injuries with significant defects.

Future Directions
The aforementioned failures with nerve conduits highlight 
the problems with their use. Namely, the current available 
nerve conduits provide nothing more than a mechanical sup-
port to the nerve. The distal and proximal ends of the nerves 
must supply the support cells, growth factors, and overall 
bridging matrix that fills the nerve conduit and promotes 
neuronal healing. One of the approaches to solve this prob-
lem is providing luminal fillers to bridge the gap between 
severed nerve ends. These luminal fillers will consist of ex-
tracellular matrix components with or without support cells 
and/or neurotrophic factors to both promote axonal growth 
and provide a luminal support structure for the budding 
axons.38,39

A variety of luminal fillers have been tried with encour-
aging results. The results of using collagen-glycosaminogly-
can (GAG) mixture as a filler are mixed.40,41 Similarly, human 
hair keratin hydrogel has been used as a filler for collagen 
conduits. Pace et al demonstrated that in comparison to 
saline-filled collagen conduits, keratin-filled conduits had 
a larger diameter after healing, improved nerve conduction 
velocity, and a higher density of myofibers in the repaired 
nerves in a nonhuman primate model.42 More complex fillers 
have also been developed. Yang et al developed a silk-fibroin 
scaffold seeded with bone marrow mesenchymal stem cells. 
Twelve weeks after creating a 10-mm defect in the rat sci-
atic nerve, the silk fibroin scaffold seeded with stem cells 
achieved much better results than the nerves repaired with 
the silk-fibroin scaffolds by themselves. In fact, their results 
were almost equivalent to those of nerve autografts.43 Re-
cently, Sun et al created three-dimensional (3D) nanofiber 
sponge-containing nerve conduits manufactured with poly 
(L-lactic acid-co-e-caprolactone)/silk fibroin (PLCL/SF). Using 
sciatic nerve defects in rat models, the study demonstrated a 
better repair effect with this filler when compared with hol-
low nerve conduits.44

Stem cells themselves have been highly touted as nerve 
conduit additives, with literally thousands of different re-
ports being published on the matter. Hundepool et al pub-
lished a meta-analysis on the topic that included 44 animal 
studies regarding the use of stem cells in nerve conduits. 
These studies mainly included adipose-derived stem cells 

(ADSCs), bone marrow stromal cells (BMSC), mesenchymal 
stem cells (MSC), and others. In all reports and with all dif-
ferent types of stem cells, the review noted that those nerve 
repairs with stem cell additives performed better than those 
with conduits not utilizing these additives.45

Delivery of growth factors to the regenerating nerve is 
also an area of developing research. Enhancing the nerve 
conduit or scaffold itself with neurotrophic factors, such as 
glial-derived neurotrophic factor (GDNF), has proven to be an 
effective way to recruit Schwann cells and promote axonal re-
generation.46,47 Similarly, microspheres enhanced with nerve 
growth factors have been used to deliver growth factors to 
regenerating nerves with promising results.48,49 Studies deliv-
ering insulin-like growth factor-1 (IGF-1) into the repair site 
show improved physical and functional recovery not only in 
young but also in aged animals.50

Alternatives to Nerve Conduits
Autologous conduits and processed allograft serve as ad-
ditional options in the hand surgeon’s armamentarium for 
digital nerve repair. Autologous nerve autografts, most fre-
quently using the sural nerve, are considered the gold stan-
dard of repair, with reported results showing value in up to 
5 cm of injury.4 Though they offer a viable source of Schwann 
cells critical to nerve regeneration, their use is not without 
associated problems, including the potential for size mis-
match between the injured nerve and available donor nerve, 
risk of sensory perception loss at the donor site, limited graft 
material, and increased operative times associated with 
nerve harvesting.37,51 In response to these shortcomings, both 
vascular graft conduits and muscle-in-vein conduits (MVCs) 
have emerged as autologous alternatives. Venous grafts, with 
tissue composition closely resembling that of nerve, have 
been the focus of studies demonstrating their effectiveness 
in the reconstruction of PNIs with a gap of 3 cm or less.52 
Though vein grafts for digital nerve reconstruction are most 
commonly harvested from the ipsilateral dorsal hand or pal-
mar forearm, proponents highlight the wide-ranging avail-
ability of donor veins and the lesser risk of injury associated 
with harvesting versus that of nerve graft harvesting.52,53 In-
terestingly, Chou et al demonstrated the histopathology of a 
saphenous vein graft successfully used to wrap a 6-cm seg-
ment of the radial branch of the median nerve in a case of re-
calcitrant carpal tunnel syndrome 4 years prior.54 The biopsy 
demonstrated that graft neovascularization without inflam-
mation, induced a change in vein morphology. Further, there 
was absence of extrinsic scar invasion, reflected by the lack 
of adhesion between the nerve and the intimal surface of the 
vein during intraoperative exploration. Despite representing 
only one case, these findings support the viability of vein 
grafts and highlight favorable characteristics that may con-
tribute to their success. Disadvantages of the vein graft have 
been discussed and include the tendency of veins to collapse, 
thus limiting their ability to address larger defects. Therefore, 
MVCs have since been introduced. The added value of this 
option lies in its use of muscle tissue interposition to prevent 
vein collapse, which in turn supports nerve bridging across 
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wider defects; however, as with all autologous options, donor 
site morbidity with MVC use remains a concern.51 Eliminat-
ing this risk, processed allograft has also been used with 
success. Allograft production results in a nonimmunogenic 
material with maintenance of the structural integrity found 
in autografts. Studies examining its use have demonstrated 
benefit in digital nerve repairs with gaps up to 3 to 4 cm.55-57 
Using data regarding allograft use in nerve injuries collected 
by the RANGER registry, Cho et al analyzed outcomes associ-
ated with 35 digital nerve injuries found to have defects 5 to 
40 mm in size. They found that 89% of patients in this cohort 
experienced improvement in sensory or motor function fol-
lowing repair with allograft.57 Rinker et al also reported on 
allograft use in the repair of 37 digital nerve injuries docu-
mented in the RANGER registry, with gaps ranging from 5 to 
15 mm in size.58 Their outcomes were found to be favorable 
as well as comparable to historical controls for repairs with 
nerve autograft and conduits. Recently, Rinker et al used the 
RANGER database to study 50 digital nerve injuries with re-
pairs, using allografts with a focus on longer nerve gaps, 25 to 
50 mm in size with an average of 35 ± 8 mm, in 28 patients.59 
The results again demonstrated consistency with historical 
data in cases of autograft repair with a mean static 2PD of 
9 ± 4 mm and recovery to an S3 or greater level using the 
Medical Research Council Classification (MRCC).

Conclusion
The repair of significant PNIs continues to be a challenging 
problem to practicing surgeons. Though nerve autografts 
are the gold standard of repair, their use is not without 
associated problems, including donor site morbidity and 
increased operative times. Nerve conduits are a promis-
ing alternative to nerve autograft; however, their use is 
currently limited to small-diameter peripheral nerves 
with small defects. Promising results have been achieved 
with modifications to the nerve conduits design, but these 
modifications have not yet been proven widely applicable 
in significant defects of human large-diameter peripheral 
nerves. Development of improved conduits will focus on 
materials that will deliver further supportive elements 
such as supporting scaffold structures, growth factors, or 
mesenchymal support. Until these new developments bear 
out and high-quality evidence becomes available, nerve 
conduit use should be limited to small peripheral nerves 
with short defects.
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